Publications

Meng Group, Google Scholar

Editorials

 

133.  X. Meng*, J. W. Elam*, and S. Barry*, Editorial for Focus on Emerging Processes and Applications of Atomic and  Molecular Layer Deposition, Nanotechnology, 2025, 36, 090201. 

https://doi.org/10.1088/1361-6528/ad9d4b

132. S. H. Chang*, X. Meng*, J. Liu*, D.-S. Tsai*, X. Wang*, C.S. Chuang*, C.-Y. Chen*, and A. Li*, Manipulations of atomic and molecular layers and its applications in energy, environment sciences and optoelectronic devices, Nanotechnology, 2023, 34, 500201.

131. X. Meng*, Z. Chen*, J. Li*, K. L. Harrison*, W. Lu*, and X. Sun*, Nanophase materials for next-generation lithium-ion batteries and beyond, Nanotechnology, 2022,  33, 410201.

130. X. Wang*, X. Meng*, J.-S. Park*, Introduction: Atomic layer deposition for emerging thin-film materials and applications, Journal of Materials Research, 2020, 35, 655-655.

Book Chapters

129. X. Meng* and J. W. Elam*, Syntheses of Nanostructured Materials via Atomic and Molecular Layer Deposition, in Book of Encyclopedia of Nanomaterials (ISBN:978-0-12-822423-6), Elsevier, 2023, 1, 2-23.

https://doi.org/10.1016/B978-0-12-822425-0.00069-5 

128. X. Meng* and Z. Chen*, Constituting Robust Interfaces for Better Lithium-ion Batteries and Beyond Using Atomic and Molecular Layer DepositionEncyclopedia of Nanomaterials (ISBN:978-0-12-822423-6), Elsevier, 2023, 2, 649-663. 

https://doi.org/10.1016/B978-0-12-822425-0.00093-2 

127. X. Meng*, Molecular Layer Deposition of Organic-Inorganic Hybrid Materials, in Book of Optoelectronic Organic-Inorganic Semiconductor Heterojunctions, CRC Press (Taylor & Francis), 2021, ISBN: 978-0367-34212-8.

126. X. Meng* and J. Li*, Two-dimensional layered materials for high-performance lithium-ion batteries, in Book of Layered Materials for Energy Storage and Conversion, The Royal Society of Chemistry, 2019, ISBN: 978-1-78801-426-7.

125. D. Geng*, X. Meng*, Y. Zong*, Functionalization of chemically derived graphene as electrode materials for fuel cells, in Book of Chemically Derived Graphene: Functionalization, Properties, and Applications, The Royal Society of Chemistry, 2018, ISBN: 978-1-78801-080-1.

124. Q. Sun, X. Meng*, Inhibiting lithium dendrite growth for lithium batteries: Challenges and Strategies, in Book of Lithium-ion Batteries: Materials, Applications and Technology, Nova Sciences, 2018, ISBN: 978-1-53613-498-8.

123. X. Meng* and J. W. Elam*, Atomic layer deposition of sub-nano to nanoscale surface coatings for next-generation advanced battery systems, in Book of Atomic Layer Deposition (ALD): Fundamentals, Characteristics and Industrial Applications, Nova Sciences, 2015, ISBN: 978-1- 63483-869-6.

Patents

122. Programmable micro-/nano-hierarchical textures with tunable chemistry for dust and particle mitigation. 2025, UA IP Disclosure.

121. Highly tunable fabrication of single-ion conductors as solid-state polymer electrolytes and surface coatings of rechargeable batteries. 2025, UA IP Disclosure.

120. Sulfide-modified cathodes with improved performance, 2024 UA IP Disclosure.

119. Sulfide coatings enabling ultra-stable cathodes of sodium batteries, 2024, US Patent Application #: 63/729,352. 

118. Improving lithium cycling efficiency of anode-free lithium metal batteries, 2024, US Patent Application #: 63/729,176.

117. Tackling interfacial and structural issues of lithium-rich high-capacity cathodes by sulfide coatings, 2024, US Patent Application #: 63/716,100.

116. High-energy lithium metal batteries achieved by inorganic and organic coatings, 2024, US Patent Application #: 63/654,754.

115. Robust polymer electrolytes with tunable properties via molecular deposition, 2023, US Patent Application #: 63/445,856.

114. Anode-free lithium metal batteries by atomic and molecular layer deposition, 2022, US Patent Application #: 63/423,630. 

113. Methods and processes for polymeric alkali metal alkoxides and thiolates as solid-state electrolytes and surface coatings in rechargeable batteries, 2022, US Patent Application #: 63/416,799. 

112. High-performance lithium-sulfur batteries enabled by superior lithium anodes and sulfur cathodes, 2022, US Patent Application #: 63/333,922.

111. High-energy lithium metal batteries enabling extremely fast charge and discharge, 2022, US Patent Application #: 63/335,503.

110. Sulfide coatings for ultra-stable cathodes of lithium batteries, 2021, US Patent Application #: 63/210,467.

109. Capacitors for high temperature systems, 2022, US Patent Application #: 17/746,027.

108. Atomic and molecular layer deposition for protective films of high capacity lithium metal anodes, 2021, US Patent Application #: 63/141937.

107. Coated nickel-rich layered oxide electrodes and applications thereof, 2020, US Patent Application #: 63/127,481.

106. Inhibiting sulfur shuttle behaviors in high-energy lithium-sulfur batteries, 2017, US Patent Application #: 62/471161. 

105. Cu2S-based superior anode for sodium-ion batteries, 2024, US Patent, Patent No. 11,876,226.

104. Ultrastable cathodes for lithium sulfur batteries, 2019, US Patent, Patent No. 10,439,219.

103. Materials for using atomic layer deposition to produce a film for solid state solid state electrolytes and protective electrode coatings for lithium batteries, 2018, US Patent, Patent No. 9,917,295.

Peer-reviewed Journal Articles

(*Corresponding author)

2025

102. K. Velasquez Carballo, X. Xiao, Hua Zhou, Y. Liu, and X. Meng*, Constructing robust interface of nickel-rich cathodes using a novel sulfide coating, 2025, in preparation.   

101. J. Cai, S. E. Trask, Z. Yang, W. Lu, H. Nguyen, Y. Liu, X. Meng, and Z. Chen*, Deciphering coulombic efficiency of lithium-ion batteries, 2025, submitted.

100. N. K C, M. Singh, F. Watanabe, and X. Meng*, Improved performance of high-nickel oxide cathode by nanoscale ZnS coating, in preparation. 

99. K. Velasquez Carballo, M. Singh, and X. Meng*, Accurately constitute robust interfaces for high-performance lithium metal batteries, ChemComm, 2025, 61, 1574-1588. (Featured by an Outside Back Cover)

https://doi.org/10.1039/D4CC05705H

2024

98. R. A. Ahmed, K. Velasquez Carballo, K. P. Koirala, Q. Zhao, J.-M. Kim, C. S. Anderson, X. Meng*, C. Wang, J-G. Zhang, and W. Xu*, Stable and fast ion-conductive polymeric lithicone for lithium metal protection, Small Structures, 2024, 5, 2400174. (Featured by an Inside Back Cover)

 https://doi.org/10.1002/sstr.202400174

97. X. Wang, K. Velasquez Carballo, A. Shao, J. Cai, F. Watanabe, and X. Meng*, A novel polymeric lithicone coating for superior lithium metal anodes, Nano Energy, 2024, 128, 109840. 

https://doi.org/10.1016/j.nanoen.2024.109840     

96. Y. Shao, J. Xu, A. Amardeep, Y. Xia, X. Meng, J. Liu*, and S. Liao*, Lithium-ion conductive coatings for Nickel-rich cathodes for lithium-ion batteries, Small Methods, 2024, 2400256.

https://doi.org/10.1002/smtd.202400256

95. X. Meng*, Y. Liu*, F. Watanabe,* K. Velasquez Carballo, J. Cai, Z. Chen, and H. Zhou, Atomic Layer Deposition of Zirconium Sulfides, Materials Today Chemistry, 2024, 37, 102013.

https://doi.org/10.1016/j.mtchem.2024.102013 

94. X. Meng*, Interface engineering of lithium metal anodes via atomic and molecular layer deposition, Inorganic Chemistry Frontiers,  2024, 11, 659-681. (Featured by an Outside Front Cover).

https://doi.org/10.1039/D3QI02241B

93. R. K. Petla, I. Lindsey, J. Li*, and X. Meng*, Surface modifications of lithium metal anodes for high-energy rechargeable batteries, ChemSusChem, 2024, e202400281.

https://doi.org/10.1002/cssc.202400281

92. E.G. Okafor, X. Wang, B. M. Nafis, A. Leda, D.R. Huitink*, and X. Meng*, Reliability evaluation of a novel metal oxide-aluminum glycerol film capacitor using nonlinear degradation modeling with dependency considerations, Quality Engineering, 2024, 36, 680-692.

https://doi.org/10.1080/08982112.2023.2285298

91. K. Velasquez Carballo, X. Wang, M. Benamara, and X. Meng*, Effects of cathode loadings and anode protection on the performance of lithium metal batteries, Nanotechnology, 2024, 35, 075401.

https://doi.org/10.1088/1361-6528/ad0d25

2017 – 2023

90. X. Wang, J. Cai, K. Velasquez Carballo, F. Watanabe, and X. Meng*, Tackling issues of lithium metal anodes with a novel polymeric lithicone coating, Chemical Engineering Journal,  2023, 475, 146156.

89. J. Cai, Z. Yang, X. Zhou, B. Wang, A. Suzana, J. Bai, C. Liao, Y. Liu, Y. Chen, S. Song, X. Zhang, L. Wang, X. He, X. Meng, N. Karami, N. A. Chernova, S. Upreti, B. Prevel, F. Wang, Z. Chen, Unveiling the parasitic-reaction-driven structural degradation in Ni-rich cathode and the electrochemical role of Li2CO3, Journal of Energy Chemistry, 2023, 85, 126-136. 

88. X. Wang and X. Meng*, Surface modifications of layered LiNixMnyCozO2 cathodes via atomic and molecular layer deposition, Rare Metals, 2023, 42, 2121-2156.

87. X. Wang, J. Cai, Y. Ren, M. Benamara, X. Zhou, Y. Li, Z. Chen, H. Zhou, X. Xiao*, Y. Liu*, and X. Meng*, High-performance LiNi0.8Mn0.1Co0.1O2 cathode by nanoscale lithium sulfide coating via atomic layer deposition, Journal of Energy Chemistry, 2022, 69, 531-540.

86. X. Wang, H. Zhou*, Z. Chen*, and X. Meng*, Synchrotron-based X-ray diffraction and absorption spectroscopy studies on layered LiNixMnyCozO2 cathode materials: a review, Energy Storage Materials, 2022, 49, 181-208.

85. Y. Liu, X. Wang, S. K. Ghosh, M. Zou, H. Zhou, X. Xiao, and X. Meng*, Atomic layer deposition of lithium zirconium oxides for improved performance of lithium-ion batteries, Dalton Transactions, 2022, 51, 2737-2749.

84. S. R. Maddox, A. Gangopadhyay, H. Ghaednia, J. Cai, X. Han, X. Meng, J. A. Goss, and M. Zou*, Closure to “Discussion-Fabrication and testing of bioinspired surface designs for friction reduction at the piston ring and liner interface”, Journal of Tribology, 2022, 144, 016001.

83. M. Sullivan, P. Tang, and X. Meng*, Surface engineering of atomic and molecular layer deposition for emerging alkali metal rechargeable batteries, Molecules, 2022, 27, 6170.

82. X. Meng*, K. C. Lau*, and H. Zhou, S. K. Ghosh, M. Benamara, and M. Zou, Molecular layer deposition of crosslinked polymeric lithicone for superior lithium metal anodes, Energy Material Advances, 2021, 9786201. https://doi.org/10.34133/2021/9786201

81. Y. Cao*, X. Meng*, and A. Li*, Atomic layer deposition of high-capacity anodes for next-generation lithium-ion batteries and beyond, Energy & Environmental Materials, 2021, 4, 363-391.

80. J. Cai, B. Polzin, L. Fan, L. Yin, Y. Liang, X. Li, Q. Liu, S. Trask, Y. Liu, Y. Ren, X. Meng*, and Z. Chen*, Stoichiometric Irreversibility of Aged Garnet Electrolytes, Materials Today Energy, 2021, 20, 100669.

79. X. Meng*, Atomic and molecular layer deposition in pursuing better batteries, Journal of Materials Research, 2021, 36, 2-25. (Invited Feature Paper – Review)

78. X. Wang, J. Cai, Y. Liu, X. Han, Y. Ren, J. Li*, Y. Liu*, and X. Meng*, Atomic-scale constituting stable interface for improved LiNi0.6Mn0.2Co0.2O2 cathodes of lithium-ion batteries, Nanotechnology, 2021, 32, 115401.

77. X. Han, J. Cai, X. Wang, Y. Liu, H. Zhou, and X. Meng*, Understanding effects of conductive additives in lithium-sulfur batteries, Materials Today Communications, 2021, 26, 101934.

76. S. R. Maddox, A. Gangopadhyay, H. Ghaednia, J. Cai, X. Han, X. Meng, J. A. Goss, and M. Zou*, Fabrication and testing of bioinspired surface designs for friction reduction at the piston ring and liner interface, Journal of Tribology, 2021, 143, 051109.

75. X. Meng*, Atomic layer deposition of solid-state electrolytes for next-generation lithium-ion batteries and beyond: Opportunities and challenges, Energy Storage Materials, 2020, 30, 296-328.

74. J. Cai, X. Han, X. Wang, and X. Meng*, Atomic layer deposition of two-dimensional layered materials: processes, growth mechanisms, and characteristics, Matter, 2020, 2, 587-630.

73. S. Jayabal, G. Saranya, D. Geng*, L.-Y. Lin*, and X. Meng*, Insight into the correlation of Pt-support interactions with electrocatalytic activity and durability in fuel cells, Journal of Materials Chemistry A, 2020, 8, 9420-9446.

72. J. Cai, B. Reinhart, P. Eng, Y. Liu, C.-J. Sun, H. Zhou, Y. Ren, and X. Meng*, Nitrogen-doped graphene-wrapped Cu2S as a superior anode in sodium-ion batteries, Carbon, 2020, 170, 430-438.

71. J. Cai, Z. Chen*, and X. Meng*, Interfacial stabilization of a graphene-wrapped Cu2S anode for high-performance sodium-ion batteries via atomic layer deposition, Journal of Composites Science, 2020, 4, 184. (Feature Paper)

70. Y. Liu, X. Wang, J. Cai, X. Han, D. Geng*, J. Li*, and X. Meng*, Atomic-scale tuned interface of nickel-rich cathode for enhanced electrochemical performance in lithium-ion batteries, Journal of Materials Science & Technology, 2020, 54, 77-86.

69. X. Wang, S. K. Ghosh, M. A. Mohajer, H. Zhou, Y. Liu, X. Han, J. Cai, M. Zou*, and X. Meng*, Atomic layer deposition of zirconium oxide thin films, Journal of Materials Research, 2020, 35, 804-812.

68. S. R. Maddox, X. Han, X. Meng, and M. Zou*, Fabrication and friction characteristics of arbitrary biosurfaces, Biointerphases, 2020,15, 061016.

67. H. Gao, J. Cai, G.-L. Xu, L. Li, Y. Rne, X. Meng*, K. Amine*, and Z. Chen*, Surface modification for suppressing interfacial parastic reactions of nickel-rich lithium-ion cathode, Chemistry of Materials, 2019, 31, 2723-2730.

66. S. Jayabal, G. Saranya, Y. Liu, D. Geng*, and X. Meng*, Interfacial design of defect-rich metallic 1T-MoS2/carbon nanotubes composite for high-electrocatalytic hydrogen evolution performance, Sustainable Energy & Fuels, 2019, 3, 2100.

65. K. Jiang, Z. Chen, and X. Meng*, A review on CuS and Cu2S as cathode materials for lithium batteries, ChemElectroChem, 2019, 6, 2825-2840. (Cover Story) (one of the Most Read in ChemElectroChem from 2018-2019)

64. J. Cai, Z. Ma, U. Wjinya, M. Zou, Y. Liu*, H. Zhou*, and X. Meng*, A revisit to atomic layer deposition of zinc oxide using diethylzinc and water as precursors, Journal of Materials Science, 2019, 54, 5236-5248.

63. Y. Shao, B. Huang, Z. Lu, Y. Liu, X. Meng, L. Du, H. Song, and S. Liao, High-performance three-dimensional pinecone-like LiNi1/3Mn1/3Co1/3O2 cathode for lithium-ion batteries, Energy Technology, 2019, 7, 1800769.

62. J. G. Steck, M. A. Mohajer, Q. Sun, X. Meng, and M. Zou*, Fabrication and tribological characterization of formation-resistant Nano-textured surfaces produced by two-photon lithography and atomic layer deposition, Tribology International, 2019, 132, 75-84.

61. J. Cai, Q. Sun, and X. Meng*, Nanostructured materials by atomic and molecular layer deposition, AIMS Materials Science, 2018, 5, 957-999.

60. S. Jayabal, J. Wu, D. Geng*, R. Wang*, and X. Meng*, Metallic 1T-MoS2 nanosheets and their composites: preparation, properties, and potential applications, Materials Today Energy, 2018, 10, 264-279.

59. Q. Sun, K. C. Lau, D. Geng, and X. Meng*, Atomic and molecular layer deposition for superior lithium-sulfur batteries: strategies, performance, and mechanisms, Batteries & Supercaps, 2018, 1, 41-68. (Cover Story)

58. H. Gao, X. Zeng, Y. Hu, V. Tileli, L. Li, Y. Ren, X. Meng, F. Maglia, P. Lamp, S. Kim, K. Amine*, and Z. Chen*, Modifying the surface of a high-voltage lithium-ion cathode, ACS Applied Energy Materials, 2018, 1, 2254-2260.

57. J. Wu, Y. Liu, D. Geng*, H. Liu*, and X. Meng*, Cobalt oxide nanosheets anchored onto nitrogen-doped carbon nanotubes as dualpurpose electrodes in lithium-ion batteries and oxygen evolution reaction, International Journal of Energy Research, 2018, 42, 853-862. (Cover Story)

56. J. Wu, J. Subramaniam, Y. Liu, D. Geng*, and X. Meng*, Facile assembly of Ni(OH)2 nanosheets on nitrogen-doped carbon nanotubes network as high-performance electrocatalyst for oxygen evolution reaction, Journal of Alloys and Compounds, 2018, 731, 766-773.

55#. X. Meng*, X.W. Wang*, D.S. Geng*, C. Ozjit-Akgun*, N. Schneider*, and J.W. Elam*, Atomic layer deposition for nanomaterials synthesis and functionalization in energy technology, Materials Horizons, 2017, 4, 133-154. (Back Cover Story)

54#. X. Meng*, Atomic-scale surface modifications and novel electrode design for high-performance sodium-ion batteries via atomic layer deposition, Journal of Materials Chemistry A, 2017, 5, 10127-10149.

53#. X. Meng*, An overview of molecular layer deposition for organic and organic-inorganic hybrid materials: Mechanisms, growth characteristics, and promising applications, Journal of Materials Chemistry A, 2017, 5, 18326-18378.

52. X. Meng, Y. Liu, Y. Cao, Y. Ren, W. Lu, and J.W. Elam, High-performance high loading lithium-sulfur batteries by low temperature atomic layer deposition of aluminum oxide on nanophase S cathodes, Advanced Materials Interfaces, 2017, 1700096 (1-11). (Cover Story).

51. X. Meng, Y. Cao, J. A. Libera, and J. W. Elam, Atomic layer deposition of aluminum sulfide: growth mechanism and electrochemical evaluation in lithium-ion batteries, Chemistry of Materials, 2017, 29, 9043-9052.

50. K. L. Harrison, K. R. Zavadil, N. Hahn, X. Meng, J. W. Elam, A. Leenheer, J. Zhang, and K. L. Jungjohann, Li slef-discharge and its prevention: direct visualization through in-situ electrochemical scanning transmission electron microscopy, ACS Nano, 2017, 11, 11194-11205.

49#. C. Zhu, K. Han, D. Geng, H. Ye, and X. Meng*, Achieving high-performance silicon anodes of lithium-ion batteries via atomic and molecular layer deposited surface coatings: an overview, Electrochimica Acta, 2017, 251, 710-728.

48. S. Jayabal, G. Saranya, J. Wu, Y. Liu, D. Geng*, and X. Meng*, Understanding high-electrocatalytic performance of two-dimensional MoS2 nanosheets and their composite materials, Journal of Materials Chemistry A, 2017,5, 24540-24563.

 

 Prior to joining University of Arkansas ( 2016 and before)

47. Y. Cao, X. Meng, and J. W. Elam, Atomic layer deposition of LixAlyS solid state electrolytes for stabilizing lithium-metal anodes, ChemElectroChem, 2016,3, 858-863.

46. S. C. Riha, A. A. Koegel, X. Meng, Y. Cao, M. J. Pellin, J. W. Elam, and A. B. F. Martinson, Atomic layer deposition of MnS: phase control and application to electrochemical applications, ACS Applied Materials & Interfaces, 2016,8, 2774-2780.

45. X. Meng* and J. W. Elam, Atomic layer deposition of nanophase materials for electrical energy storage, ECS Transactions, 2015, 69, 39-57.

44. M. Li, X. Li, W. Li, X. Meng, Y. Yu, and X. Sun, Atomic layer deposition derived amorphous TiO2 thin film decorating graphene nanosheets with superior rate capability, Electrochemistry Communications, 2015, 57, 43-47.

43. N. P. Dasgupta§ , X. Meng§ , A. B. F. Martinson, and J. W. Elam, Atomic layer deposition of metal sulfide thin films and nanostructures, Accounts of Chemical Research, 2015, 48, 341-348. (Highlighted by Argonne Today. § Equally contributed)

42. X. Meng*, Towards high-energy and durable lithium-ion batteries via atomic layer deposition: elegantly atomic-scale material design and surface modification, Nanotechnology, 2014, 020501.

41. X. Meng, D. Comstock, T. Fister, and J. W. Elam, Atomic layer deposition of nanoscale Li2S films for high performance lithium-sulfur batteries, ACS Nano, 2014, 8, 10963-10972.

40. X. Meng, K. He, D. Su, X. Zhang, C. Sun, Y. Ren, W. Weng, L. Trahey, and J. W. Elam, Galliam sulfide-single walled carbon nanotube composites: high-performance anodes for lithium-ion batteries, Advanced Functional Materials, 2014, 24, 5435-5442.

39. X. Meng, J. Libera, T. T. Fister, H. Zhou, P. Fenter, and J. W. Elam, Atomic layer deposition of gallium sulfide films using hexakis(dimethylamido)digallium and hydrogen sulfide, Chemistry of Materials, 2014, 26, 1029-1039. (Highlighted by both US DOE EFRC Frontiers and DOE Office of Science)

38. X. Meng, S. C. Riha, J. A. Libera, Q. Wu, H.-H. Wang, A. B. F. Martinson, and J. W. Elam, Tunable core-shell SWCNT-Cu2S networked nanocomposites as high-performance cathodes for lithium-ion batteries, Journal of Power Sources, 2015, 280, 621-629.

37. J. S. Park, X. Meng, J. W. Elam, S. Hao, C. Wolverton, C. Kim, and J. Cabana, Ultrathin lithium-ion conducting coatings for increased interfacial stability in high voltage lithium-ion batteries, Chemistry of Materials, 2014, 26, 3128-3134.

36. A. L. Lipson, K. Puntambekar, D. J. Comstock, X. Meng, M. L. Geier, J. W. Elam, and M. C. Hersam, Nanoscale investigation of solid electrolyte interphase inhibition on Li-ion battery electrodes via atomic layer deposition of Al2O3, Chemistry of Materials, 2014, 26, 935-940.

35. X. Zhang, X. Meng, J. W. Elam, and I. Belharouak, Electrochemical characterization of voltage fade of Li1.2Ni0.2Mn0.6O2 cathode, Solid State Ionics, 2014, 268, 231-235.

34. I. Bloom, L. Trahey, A. Abouimrane, I. Belharouak, H. Wu, Q. Wu, W. Lu, D. P. Abraham, M. Bettge, J. Elam, X. Meng, A. Burrell, C. Ban, R. Tenet, J. Nanda, and N. Dudney, Effect of interface modifications on voltage fade in lithium-manganese-rich, Li-Ni-Mn-Co-O cathode materials, Journal of Power Sources, 2014, 249, 509-514.

33. X. Li, J. Liu, X. Meng, Y. Tang, R. Li, M. Cai, X. Sun, Significant impact on cathode performance of lithium-ion batteries by precisely controlled metal oxide coatings of atomic layer deposition, Journal of Power Sources, 2014, 247, 57-69.

32. X. Meng, J. Liu, M. N. Banis, R. Li, and X. Sun, Atomic layer deposited Li4Ti5O12 on nitrogen-doped carbon nanotubes, RSC Advances, 2013, 3, 7285-7288.

31. X. Meng, M. N. Banis, D. Geng, X. Li, Y. Zhang, R. Li, and X. Sun, Controllable atomic layer deposition of one-dimensional nanotubular TiO2, Applied Surface Science, 2013, 266, 132-140.

30. S. Sun , G. Zhang, N. Gauquelin, N. Chen, J. Zhou, S. Yang, W. Chen, X. Meng, D. Geng, M. Banis, R. Li, S. Ye, S. Knights, G. Botton, T.-K. Sham, X. Sun, Single Atoms of Pt on Graphene as Highly Active and CO-tolerant Electrocatalyst for Methanol Oxidation, Scientific Reports, 2013, 3, 1775. (ESI Highly Cited Paper)

29. M. N. Banis, X. Meng, Y. Zhang, M. Cai, R. Li, and X. Sun, Spatially sequential growth of various WSi2 networked nanostructures and mechanism, Journal Physical Chemistry C, 2013, 117, 19189-19194.

28. M. N. Banis, S. Sun, X. Meng, Y. Zhang, R. Li, M. Cai, T.-K. Sham, and X. Sun, TiSi2Ox coated N-doped carbon nanotubes for the oxygen reduction reaction in proton exchange membrane fuel cells, Journal Physical Chemistry C, 2013, 117, 15457-15467.

27. J. Liu, X. Meng, Y. Hu, M. N. Banis, D. Geng, M. Cai, R. Li, and X. Sun, Controlled synthesis of zirconium oxide on graphene nanosheets by atomic layer deposition, Carbon, 2013, 52, 74-82.

26. Y. Chen, J. Wang, X. Meng, Y. Zhong, R. Li, X. Sun, S. Ye, and S. Knights, Pt-SnO2/Nitrogen-doped CNT hybrid catalysts for PEMFC: effects of crystalline and amorphous SnO2, Journal of Power Sources, 2013, 238, 144-149.

25. X. Meng, X.-Q. Yang, and X. Sun, Emerging applications of atomic layer deposition for lithium-ion batteries, Advanced Materials, 2012, 24, 3589-3615. (ESI Highly Cited Paper)

24. X. Li, X. Meng, D. Geng, J. Yang, J. Liu, R. Li, and X. Sun, Three dimensional sandwich-structured crystalline and amorphous SnO2-graphene nanosheet composites with superior Li+ storage for high performance lithium ion battery anode materials, Advanced Functional Materials, 2012, 22, 1647-1654. (Highlighted by Frontispiece) (ESI Highly Cited Paper)

23. J. Liu, X. Meng, M. N. Banis, R. Li, and X. Sun, Crystallinity-controlled deposition of zirconium oxide on nitrogen doped carbon nanotubes by atomic layer deposition, J. Phys. Chem. C, 2012, 116, 14656-14664.

22. X. Li, A. Dhanabalan, X. Meng, L. Gu, X. Sun, and C. Wang, Novel fractal nano-porous SiO2 films on nickel foam fabricated by sol-gel assisted electrostatic spray deposition, Microporous and Mesoporous Materials, 2012, 151, 488-494.

21. X. Li, J. Liu, Y. Zhang, Y. Li, H. Liu, X. Meng, J. Yang, D. Geng, D. Wang, R. Li, and X. Sun, High concentration nitrogen doped carbon nanotube anodes with superior Li+ storage performance for lithium rechargeable battery application, Journal of Power Sources, 2012, 197, 238-245.

20. X. Li, D. Geng, Y. Zhang, X. Meng, R. Li, and X. Sun, Superior cycle stability of nitrogen-doped graphene nanosheets as anode for lithium ion batteries, Electrochemistry Communications, 2011, 13, 822-825. (ESI Highly Cited Paper)

19. X. Meng, Y. Zhang, S. Sun, R. Li, and X. Sun, Three growth modes and mechanisms for highly structure-tunable SnO2 nanotube arrays of template-directed atomic layer deposition, Journal of Materials Chemistry, 2011, 21, 12321-12330.

18. X. Meng, D. Geng, J. Liu, R. Li, and X. Sun, Controllable synthesis of graphene-based titanium dioxide nanocomposites by atomic layer deposition, Nanotechnology, 2011, 22, 165602. (Featured Article and Cover Page Story)

17. X. Meng, M. Ionescu, M. N. Banis, Y. Zhong, H. Liu, Y. Zhang, S. Sun, R. Li, and X. Sun, Heterostructural coaxial nanotubes of CNT@Fe2O3 via atomic layer deposition: effects of surface functionalization and nitrogen-doping, Journal of Nanoparticle Research, 2011, 13, 1207-1218.

16. X. Meng, Y. Zhong, Y. Sun, M. N. Banis, R. Li, and X. Sun, Nitrogen-doped carbon nanotubes coated by atomic layer depoited SnO2 with controlled morphology and phase, Carbon, 2011, 49, 1133-1144.

15. Y. Chen, J. Wang, X. Meng, Y. Zhong, R. Li, X. Sun, S. Ye, and S. Knights, Atomic layer deposition assisted Pt-SnO2 hybrid catalysts on nitrogen-doped CNTs with enhanced electrocatalytic activities for low temperature fuel cells, International Journal of Hydrogen Energy, 2011, 36, 11085-11092.

14. X. Meng, D. Geng, J. Liu, M. N. Banis, Y. Zhang, R. Li, and X. Sun, Non-aqueous approach to synthesize amorphous/crystalline metal oxide-graphene nanosheet hybrid composites, Journal of Physical Chemistry C, 2010, 114, 18330-18337.

13. X. Meng, H. Zhang, and J. Zhu, Characterization of particle size evolution of the deposited layer during electrostatic powder coating processes, Powder Technology, 2009, 195, 264-270.

12. X. Meng, J. Zhu, and H. Zhang, Influence of different powders on characteristics of particle charging and deposition during corona charging processes, Journal of Electrostatics, 2009, 67, 663-671.

11. X. Meng, J. Zhu, and H. Zhang, The characteristics of particle charging and deposition during powder coating processes with ultrafine powder, Journal of Physics D: Applied Physics, 2009, 42, 065201.

10. X. Meng, H. Zhang, and J. Zhu, A general empirical formula of current-voltage characteristics for point-to-plane geometry corona discharges, Journal of Physics D: Applied Physics, 2008, 41, 065209.

9. X. Meng, H. Zhang, and J. Zhu, The characteristics of particle charging and deposition during powder coating processes with coarse powder, Journal of Physics D: Applied Physics, 2008, 41, 195207.

8. X. Meng, J. Zhu, and H. Zhang, The characteristics of current density distribution during corona charging processes of different particulates, Journal of Physics D: Applied Physics, 2008, 41, 172007.

7. Z. Ji, X. Meng, and M. Shi, Characteristics of instantaneous flow outside filter tube of ceramic filter during pulse backfluch, China Filtration and Separation, 2001, 22, 1-4.

6. Z. Ji, X. Meng, and M. Shi, Experimental measures of the injecting performance of the back pulse jetting system of a ceramic filter (II)—the measuring and analysis of the instantaneous entrainment ratio, Chemical Engineering & Machinery, 2000, 27, 251-253.

5. Z. Ji, X. Meng, and M. Shi, Experimental measures of the injecting performance of the back pulse jetting system of a ceramic filter (I) – the measuring and analysis of the jetted gas flow, Chemical Engineering & Machinery, 2000, 27, 187-189.

4. Z. Ji, X. Meng, and M. Shi, The pulse-backing cleaning processes of ceramic filter, Petroleum Science, 2000, 3, 20-24.

3. Z. Ji, and X. Meng, Measurement and analysis of flow field inside filtering candle of ceramic filter during pulse cleaning process, Journal of the University of Petroleum, 2000, 24, 73-75.

2. Z. Ji, X. Meng, F. Ding, and M. Shi, Instantaneous velocity outside filtration element in ceramic filter, Journal of Chemical Industry and Engineering, 2000, 51, 165-168.

1. X. Meng, and Z. Ji, Measurement and analysis of flow parameters during pulse back cleaning process of ceramic filters, Journal of the University of Petroleum, 1999, 23, 57-59.